
Quiz 5 Solutions

1. Decide with full justification whether the series converges:
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This has limit 1 as n → ∞. We know that
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converges (p-series with

p = 2 > 1), hence by the limit comparison test
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The integral test also works: f(x) =
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x
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is decreasing, continuous and

goes to 0 as x → ∞. We have∫ ∞
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So by the integral test, the series converges. (To see

∫
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dx =

arcsecx+ C, do trig sub x = sec θ)

2. Decide with full justification whether the series converges absolutely, con-
ditionally, or diverges:
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.



Solution: This is an alternating series with bn =
1√
lnn

. Since
√

and ln

are increasing, bn is decreasing. Also bn → 0 as n → ∞. So the alternating
series test is applicable and shows that the series converges. So we only
have to decide whether it converges absolutely or conditionally. We have∣∣∣∣(−1)n√
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diverges (Harmonic series). So

by the comparison test,
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∣∣∣∣ diverges, hence the series in question is

conditionally convergent.

3. Decide with full justification whether the series converges absolutely, con-
ditionally, or diverges:
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Solution: Let an =
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n!
. We apply the ratio test:∣∣∣∣an+1
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This goes to 0 < 1 as n → ∞, therefore the series converges absolutely by
the ratio test.


