Quiz 5 Solutions

1. Decide with full justification whether the series converges:
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Solution: Since for large n we have v/n2? — 1 ~ Vn? = n, we compare with
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This has limit 1 as n — oco. We know that E —5 converges (p-series with
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The integral test also works: f(z) = ————
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goes to 0 as x — oo. We have
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So by the integral test, the series converges. (To see / ———dx =
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arcsec x + C', do trig sub x = sec )

2. Decide with full justification whether the series converges absolutely, con-
ditionally, or diverges:
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Solution: This is an alternating series with b, = Since ,/ and In
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are increasing, b, is decreasing. Also b, — 0 as n — o0o0. So the alternating
series test is applicable and shows that the series converges. So we only

have to decide whether it converges absolutely or conditionally. We have
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by the comparison test, Z diverges, hence the series in question is
n=3

conditionally convergent.

3. Decide with full justification whether the series converges absolutely, con-
ditionally, or diverges:
i n(=3)"
n!

n=1
. n(—3)" :
Solution: Let a, = T We apply the ratio test:
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This goes to 0 < 1 as n — oo, therefore the series converges absolutely by
the ratio test.



