Quiz 5 Solutions

1. Decide with full justification whether the series converges:

$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2 - 1}}.$$

Solution: Since for large n we have $\sqrt{n^2 - 1} \approx \sqrt{n^2} = n$, we compare with $\frac{1}{n^2}$. Then

$$\frac{\frac{1}{n\sqrt{n^2-1}}}{\frac{1}{n^2}} = \frac{n^2}{n\sqrt{n^2-1}} = \frac{1}{\sqrt{1-\frac{1}{n^2}}}.$$

This has limit 1 as $n \to \infty$. We know that $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges (p-series with

p=2>1), hence by the limit comparison test $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$ also converges.

The integral test also works: $f(x) = \frac{1}{x\sqrt{x^2 - 1}}$ is decreasing, continuous and goes to 0 as $x \to \infty$. We have

$$\int_{2}^{\infty} \frac{1}{x\sqrt{x^{2}-1}} dx = \lim_{t \to \infty} \int_{2}^{t} \frac{1}{x\sqrt{x^{2}-1}} dx$$

$$= \lim_{t \to \infty} \operatorname{arcsec} x \Big|_{2}^{t}$$

$$= \lim_{t \to \infty} \operatorname{arcsec}(t) - \operatorname{arcsec}(2)$$

$$= \frac{\pi}{2} - \frac{\pi}{3}.$$

So by the integral test, the series converges. (To see $\int \frac{1}{x\sqrt{x^2-1}} dx = \arccos x + C$, do trig sub $x = \sec \theta$)

2. Decide with full justification whether the series converges absolutely, conditionally, or diverges:

$$\sum_{n=3}^{\infty} \frac{(-1)^n}{\sqrt{\ln n}}.$$

Solution: This is an alternating series with $b_n = \frac{1}{\sqrt{\ln n}}$. Since $\sqrt{}$ and \ln are increasing, b_n is decreasing. Also $b_n \to 0$ as $n \to \infty$. So the alternating series test is applicable and shows that the series converges. So we only have to decide whether it converges absolutely or conditionally. We have

$$\left|\frac{(-1)^n}{\sqrt{\ln n}}\right| = \frac{1}{\sqrt{\ln n}} > \frac{1}{\ln n} > \frac{1}{n} \text{ and } \sum_{n=3}^{\infty} \frac{1}{n} \text{ diverges (Harmonic series)}.$$
 So

by the comparison test, $\sum_{n=3}^{\infty} \left| \frac{(-1)^n}{\sqrt{\ln n}} \right|$ diverges, hence the series in question is conditionally convergent.

3. Decide with full justification whether the series converges absolutely, conditionally, or diverges:

$$\sum_{n=1}^{\infty} \frac{n(-3)^n}{n!}.$$

Solution: Let $a_n = \frac{n(-3)^n}{n!}$. We apply the ratio test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)(-3)^{n+1}}{(n+1)!} \frac{n!}{n(-3)^n} \right|$$

$$= \frac{n+1}{n} \frac{3^{n+1}}{3^n} \frac{n!}{(n+1)!}$$

$$= \frac{n+1}{n} 3 \frac{1}{n+1}$$

$$= \frac{3}{n}$$

This goes to 0 < 1 as $n \to \infty$, therefore the series converges absolutely by the ratio test.